储氢材料的常见储氢材料

2024-05-12

1. 储氢材料的常见储氢材料

目前储氢材料有金属氢化物、碳纤维碳纳米管、非碳纳米管、玻璃储氢微球、络合物储氢材料以及有机液体氢化物。下面仅就合金、有机液体以及纳米储氢材料三个方面对储氢材料加以介绍。一,合金储氢材料储氢合金是指在一定温度和氢气压力下,能可逆的大量吸收、储存和释放氢气的金属间化合物,其原理是金属与氢形成诸如离子型化合物、共价型金属氢化物、金属相氢化物-金属间化合物等结合物,并在一定条件下能将氢释放出来。合金作为储氢材料要满足一定的要求,首先其氢化物的生成热要适当,如果生成热太高,生成的氢化物过于稳定,释放氢时就需要较高的温度.而如果生成热太低,则不易吸收氢。其次形成氢化物的平衡压要适当,最好在室温附近只有几个大气压,便于吸放氢,而且要吸放速度快,这样才能够满足实际应用的需求。另外合金及其氢化物对水、氧和二氧化碳等杂质敏感性小,反复吸放氢时,材料性能不至于恶化。而且,储氢材料的氢化物还要满足在存储与运输过程中性能可靠、安全、无害、化学性质稳定等条件。现在已研究的并且符合上述要求的有镁系、稀土系、钛系和锆系等。在上述储氢材料中,镁系储氢合金具有较高的储氢容量,而且吸放氢平台好、资源丰富、价格低廉,应用前景十分诱人。镁可直接与氢反应,在300—400℃和较高的压力下, 反应生成Mg和H2反应生成MgH2: Mg + H2= MgH2?△H=-74.6kJ/mol。MgH2理论氢含量可达7.6% , 具有金红石结构, 性能较稳定, 在287 ℃时分解压为101.3kPa。由于纯镁的吸放氢反应动力学性能差, 吸放氢温度高, 所以纯镁很少被直接用来储存氢气,为此人们又开始研究镁基储氢合金材料。到目前为止, 人们已对300多种重要的镁基储氢合金材料进行了研究。 二,液态有机物储氢材料 有机液体氢化物贮氢是借助不饱和液体有机物与氢的一对可逆反应, 即加氢和脱氢反应来实现的。加氢反应时贮氢,脱氢反应时放氢, 有机液体作为氢载体达到贮存和输送氢的目的。烯烃、炔烃、芳烃等不饱和有机液体均可作贮氢材料, 但从贮氢过程的能耗、贮氢量、贮氢剂、物理等方面考虑, 以芳烃特别是单环芳烃作贮氢剂为佳, 常用的有机物氢载体有苯、甲苯、甲基环己烷、萘等。用这些有机液体氢化物作为贮氢剂的贮氢技术, 是20 世纪80 年代开发的一种新型贮氢技术。1980年, Taube 等分析、论证了利用甲基环己烷作氢载体贮氢为汽车提供燃料的可能性。随后许多学者对为汽车提供燃料的技术开展了很多卓有成效的研究和开发工作, 对催化加氢脱氢的贮存输送进行了广泛的开发。有机液体氢化物贮氢作为一种新型贮氢材料, 其贮氢特点是: 有机液的贮存、运输安全方便, 可利用现有的贮存和运输设备,有利于长距离大量运输,贮氢量大, 苯和甲苯的理论贮氢量分别为7.19(wt)% 和6.18(wt)% ,比现有的金属贮氢量高得多,贮氢剂成本低且可多次循环使用,加氢反应要放出大量的热,可供利用,脱氢反应可利用废热。目前存在的主要问题是有机物氢载体的脱氢温度偏高, 实际释氢效率偏低。因此, 开发低温高效的有机物氢载体脱氢催化剂、采用膜催化脱氢技术对提高过程效能有重要意义 。三,纳米储氢材料纳米储氢材料分为两种方式,一种是将原有的储氢材料纳米化,还有一种就是开发新的纳米材料作为储氢材料。储氢合金纳米化提高储氢特性主要表现在以下几个方面原因。(1)对于纳米尺寸的金属颗粒,连续的能带分裂为分立的能级,并且能级间的平均间距增大,使得氢原子容易获得解离所需的能量,表现为贮氢合金活化能降低和活化温度降低。(2)纳米颗粒具有巨大的比表面积,电子的输送将受到微粒表面的散射,颗粒之间的界面形成电子散射的高势垒,界面电荷的积累产生界面极化,而元素的电负性差越大,合金的生成焓越负,合金氢化物越稳定。金属氢化物能够大量生成,单位体积吸纳的氢的质量明显大于宏观颗粒。(3)纳米贮氢合金比表面积大,表面能高,氢原子有效吸附面积显著增多,氢扩散阻力下降,而且氢解反应在合金纳米晶的催化作用下反应速率增加,纳米晶具有高比例的表面活性原子,有利于反应物在其表面吸附,有效降低了电极表面氢原子的吸附活化能,因而具有高的电催化性能。另外,由于纳米晶粒相当细小,导致晶界和晶格缺陷增加,而晶体缺陷和位错处的原子具有较高的能量可视为反应的活性中心,从而降低析氢过电位。(4)晶粒的细化使其硬度增加,贮氢合金的整体强度随晶粒尺寸的增加而增强,这对于抗酸碱及抗循环充放粉化,以及抵抗充放电形成的氧压对贮氢基体的冲击大有裨益,并且显著提高了贮氢合金耐腐蚀性。

储氢材料的常见储氢材料

2. 宋岩的学术成绩

1. 合金力学性质的计算与合金设计成功的将电子结构理论应用于结构钛合金和医用钛合金力学性质的计算和合金设计,系统地计算了金属的弹性模量和理论强度(Phys. Rev. B 59, 1422, 1999; Phil, Mag. A 81, 321, 2001), 研究了合金元素对合金相稳定性,弹性模量及强度的影响(Phil,Mag.A 82.1345,2002),并将理论研究结果应用于设计低弹性模量/高强度的医用钛合金(J.Computer. Aided Mater.Design 6,355,1999)2. 镁氢化物储氢性能的计算与预测应用第一性原理方法,研究了镁基储氢合金的储氢性能,计算了合金元素对MgH2稳定性的影响(Phys.Rev.B 69,094205,2004),预测了MgH2一种新的亚稳相的存在(Phys.Rev.Lett.审稿中),在理论研究的指导下,成功地在实验上将MgH2的分解温度从430°降至150°(Int.J.Hydrogen Energy 29,73,2004), 为MgH2作为储氢载体的实用化取得了突破性进展。3.Li-N-H体系键相互作用机制的研究系统地计算了Li-N-H体系,Li2NH,LiNH2,LiH和NH3的电子结构和体系的总能量,应用谐振子振动模型。首次在理论上确定了Li-N,N-H键间的相互作用强度,在此基础上提出了LiNH2分解反应机制模型,从理论上澄清了实验上关于LiNH2分解反应机制(一次直接分解反映〈Nature 420,302,2002〉和二次过渡分解反应〈J.Phys.Chen.B 108.7887,2004〉)的争论,为进一步的合金设计打下了坚实的基础.4. 论着成果1) J. H. Dai, Y. Song, and R. Yang, Influence of impurity on phase stability of martensites in titanium, Philo. Mag., (2012) DOI: 10.1080/14786435.2012.669075.2) Y. Song, J. H. Dai, and R. Yang, Mechanism of oxygen adsorption on surfaces of γ-TiAl, Surf. Sci. (2012) 606, 852-857.3) Y. Song, J. H. Dai, and R. Yang, First principles investigation of interaction of oxygen with low index surfaces of -TiAl, Materials Science Forum (2012) 706-709, 1106-1114.4) Y. L. Hao, R. Yang, Y. Song, Y. Y. Cui, D. Li, and A. Niinomi, Formation of point defects in TiAl and NiAl, Intermetallics, 12, 951-956, 2004.5) Y. L. Hao, R.Yang, Y. Song, Y. Y. Cui, D. Li, and M. Niinomi, Concentration of point defects and site occupancy behavior in ternary NiAl alloys, Mater. Sci. Eng. A 365, 85-89, 2004.6) Y. L. Hao, R. Yang, Q. M. Hu, D. Li, Y. Song, and M. Niinomi, Bonding characteristics of micro-alloyed B2 NiAl in relation to site occupancies and phase stability, Acta Mater. 51, 5545-5554, 2003.7) Y. L. Hao, Y. Song, R.Yang, Y. Y. Cui, D. Li, and M. Niinomi, Concentration of point defects in binary NiAl, Philo. Mag. Lett. 83, 375-384, 2003.8) Y. Song, R.Yang, and Z. X. Guo, First principles estimation of bulk modulus and theoretical strength of titanium alloys, Mater. Trans. 43, 3028-3031, 2002.9) Y. Song, Z. X. Guo, R. Yang, and D. Li, First principles study of influence of alloying elements on TiAl: cleavage strength and deformability, Comput. Mater.. Sci. 23, 55-61, 2002.10) Y. Song, Z. X. Guo, and R. Yang, Influence of interstitial elements on the bulk modulus and theoretical strength of alpha-titanium: a first-principles study, Philo. Mag. A 82, 1345-1359, 2002.11) Y. Song, Z. X. Guo, R. Yang, and D. Li, First principles study of site substitution of ternary elements in NiAl, Acta Mater. 49, 1647-1654, 2001.12) Y. Song, R. Yang, D. Li, and Z. X. Guo, A first-principles study of the theoretical strength and bulk modulus of hcp metals, Philo. Mag. A 81, 321-330, 2001.13) Y. Song, R. Yang, D. Li, Z. Q. Hu, and Z. X. Guo, A first principles study of the influence of alloying elements on TiAl: site preference, Intermetallics 8, 563-568, 2000.14) Y. Song, R. Yang, D. Li, W. T. Wu, and Z. X. Guo, Calculation of theoretical strengths and bulk moduli of bcc metals, Phys. Rev. B 59, 14220-14225, 1999.15) Y. Song, D. S. Xu, R. Yang, D. Li, W. T. Wu, and Z. X. Guo, Theoretical study of the effects of alloying elements on the strength and modulus of beta-type bio-titanium alloys, Mater. Sci. Eng. A 260, 269-274, 1999.16) Y. Song, R. Yang, D. Li, Z. Q. Hu, and Z. X. Guo, Calculation of bulk modulus of titanium alloys by first principles electronic structure theory, J. Computer-Aided Mater. Design, 6, 355-362, 1999.17) Y. Song, R. Yang, D. Li, W. T. Wu, and Z. X. Guo, First principles study of influence of alloying elements on TiAl: Lattice distortion, J. Mater. Res. 14, 2824-2829, 1999.18) B. Shi, Y. Song, J. H. Dai, and H. Z. Yu, Influence of dopants Ti and Al on dehydrogenation characteristics of Mg(BH4)2: Electronic structure mechanisms, J. Phys. Chem. C, 2012, accepted.19) J. H. Dai, Y. Song, and R. Yang, Intrinsic Mechanisms on enhancement of hydrogen desorption from MgH2 by (001) surface doping, Int. J. Hydrogen Energy., 36, 12939-12949, 2011.20) J. H. Dai, Y. Song, and R. Yang, Adsorption of water molecule on (001) and (110) surfaces of MgH2, Surf. Sci., 605, 1224-1229, 2011.21) J. H. Dai, Y. Song, and R. Yang, First Principles Study on Hydrogen Desorption from a Metal (Al, Ti, Mn, Ni) Doped MgH2 (110) Surface, J. Phys. Chem. C., 114, 11328-11334, 2010.22) Y. Song, J. H. Dai, X. M. Liang and R. Yang, Influence of dopants Ti and Ni on bonding interactions and dehydrogenation properties of lithium alanate, Phys. Chem. Chem. Phys., 12, 10942-10949, 2010.23) Y. Song, J. H. Dai, R. Yang, Influence of dopants Ti and Ni on dehydrogenation properties of NaAlH4: Electronic structure mechanisms, J. Phys. Chem. C, 113, 10215-10221, 2009.24) Y. Song and R. Yang, Decomposition mechanism of magnesium amide Mg(NH2)2, Int. J. Hydrogen Energy, 34, 3778-3783, 2009.25) 代建红, 李成桂, 宋岩, 掺杂元素Ti和Ni对NaAlH4储氢性能影响的第一原理研究, 化学学报,67, 1447-1454, 2009.26) Y. Song, W. C. Zhang, and R. Yang, Stability and bonding mechanism of ternary (Mg, Fe, Ni)H2 hydrides from first principles calculations, Int. J. Hydrogen Energy, 34, 1389-1398, 2009.27) Y. Song, R. Singh and Z.X. Guo, A First-Principles Study of the Electronic Structure and Stability of a Lithium Aluminium Hydride for Hydrogen Storage, J. Phys. Chem. B, 110, 6906-6910, 2006.28) Y. Song and Z.X. Guo, Electronic Structure, Stability and Bonding of the Li-N-H Hydrogen Storage System, Phys. Rev. B, 74, 195120-7, 2006.29) Y. Song and Z.X. Guo, Metastable MgH2 Phase Predicted by First Principles Calculations, Appl. Phys. Lett., 89, 111911-3, 2006.30) Y. Song , Z.X. Guo and R. Yang, Influence of Selected Alloying Elements on the Stability of Magnesium Dihydride for Hydrogen Storage Applications: A First Principles Investigation, Phys. Rev. B, 69, 094205-11, 2004.31) Y.Song and Z.X. Guo, Influence of Titanium on the Hydrogen Storage Characteristics of Magnesium Hydrides: A First-Principles Study, Mat. Sci. Eng.-A, 365, 73-79, 2004.32) C. X. Shang, M. Bououdina, Y. Song and Z.X. Guo, Mechanical Alloying and Electronic Simulations of (MgH2+M) Systems (M=Al,Ti,Fe,Ni,Cu and Nb) for H Storage, Int. J. Hydrogen Energy, 29, 73-80, 2004.33) C. X. Shang, M. Bououdina, Y. Song and Z.X. Guo, Structural Stability and Dehydrogenation of (MgH2+Al,Nb) Powder Mixtures during Mechanical Alloying, Mater. Transactions, 44, 2356-2362, 2004.34) Z.X. Guo, M. Bououdina, Y. Song and C. Shang, Mechanical Alloying and Electronic Simulation of Mg-Based Hydrogen Absorbing Materials, in Advanced Materials and Processing, eds. S. Hanada, Z. Zhong, S.W. Nam and R.N. Wright, JIM, 2001, pp.2917-2920.

3. 储氢材料中,所有元素化合价都是0价。那“金属氢化物”是不是也是这样? 另一个问题,电解池中,如果

储氢材料属于金属材料,金属材料中的化合物与化学中的化合物是完全不同的概念。比如Fe3C、VC等就不符合化合价的,至于储氢材料中的金属氢化物,有两类:其一是由Ⅰ和Ⅱ主族与氢作用,形成离子型氢化物,H以负离子嵌入金属离子间形成。其二是Ⅲ和Ⅳ族过渡族金属生成金属型氢化物, H以正离子固溶于金属晶格间隙形成。储氢合金目前三种:1、镁系储氢合金以Mg2Ni为基础的储氢合金。2、稀土系储氢合金是以LaNi5为典型代表。主要有LaNi5三元系(主要有两个系列LaNi5-xMx型和R0.2La0.8Ni5型)MmNi5系、MlNi5系。3、钛系储氢合金有钛铁系合金以TiFe合金为主、钛锰系合金以TiMnl.5为主。
在金属材料中,只有正常价化合物才符合化合价规律,其他的像电子化合物、间隙化合物、间隙相都不符合化合价规律,因此,不能够用化合价来评价。所以,化合价这个词不能够推而广之。

储氢材料中,所有元素化合价都是0价。那“金属氢化物”是不是也是这样? 另一个问题,电解池中,如果

4. 储氢金属中氢显多少价,常见的储氢金属有哪些

金属与氢通过化合键而结合,形成了金属氢化物。如VH2、NbH2、TiH2、MgH2等。
储氢金属中氢显-1价
 
常见的储氢金属有哪些
矾V、铌Nb、钛Ti、镁Mg、镧La、锆Zr等

5. 高功率Ni/MH(M表示储氢合金,MH中的H可看作0价)电池已经用于混合动力汽车。总反应方程式如下:Ni(OH)

     A         充电相当于电解池,放电相当于原电池。根据反应式可知,放电时NiOOH得到电子,作正极,被还原,发生还原反应,电极反应式为NiOOH+H 2 O+e - =Ni(OH) 2 +OH - ,所以正极附近溶液的碱性增强,A正确,D不正确。放电时MH失去电子,作负极,电极反应式为MH+OH - -e - =M+H 2 O,B不正确。充电时Ni(OH) 2 失去电子,是阳极,电极反应式为Ni(OH) 2 +OH ― ―e - =NiOOH+H 2 O,C不正确。答案选A。    

高功率Ni/MH(M表示储氢合金,MH中的H可看作0价)电池已经用于混合动力汽车。总反应方程式如下:Ni(OH)

6. 这个MH为什么M是0价 ,H是0价 。解释一下答案D,这个MH如何储氢。

百度百科上有
http://baike.baidu.com/link?url=dYCudCnMozNIgY3cEkPuhCw2ivNJhaN9A4okymK08j6gSX2BcaZxoMgFL6SRPHGZjHmGaYbJo2G0UkIwgs2tuq

7. 以储氢合金LaNi5为例说明储氢机理

镧镍合金能大量吸收H2形成金属氢化物,可作储氢材料。
20世纪70年代以来,在氢能研究中发现某些过渡金属合金具有可逆吸放氢的功能,如镧镍金属间化合物:LaNi5+3H2LaNi5H6,可用这类合金材料作为储氢材料,来装载和运输氢气。
储氢材料有三个重要系列:镍基合金,如 LaNi6、LnNi5(Ln为混合稀土元素)、LaNi4Cu等;铁基合金,如TiFe、Ti(Fe1-xMnx)、Ti(Fe1-xNix) 等;镁基合金,如Mg2Cu、Mg2Ni等。
金属或合金(用M代表)与氢作用可以生成金属氢化物(MHn)。其反应方程式为: M+nH2=MHn+△H(生成热) 
该反应是一个可逆过程、正向反应时,金属吸氢,并放出热量;逆向反应时,金属氢化物释氢,吸收热量。这样,只需要改变温度与压力,就能使反应向正向或逆向反复进行。达到金属(合金)储氢或释氢的日的。当然,不是任何金属或合金都只有上述的功能,所以发现合适的金属和合金是获得储氢材料的关键问题了。

以储氢合金LaNi5为例说明储氢机理

8. 储氢合金为什么显负价

M显+1价,H显负价